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SUMMARY

Cell signaling networks coordinate specific patterns
of protein expression in response to external cues,
yet the logic by which signaling pathway activity de-
termines the eventual abundance of target proteins is
complex and poorly understood. Here, we describe
an approach for simultaneously controlling the Ras/
Erk pathway and monitoring a target gene’s tran-
scription and protein accumulation in single live
cells. We apply our approach to dissect how Erk ac-
tivity is decoded by immediate early genes (IEGs).
We find that IEG transcription decodes Erk dy-
namics through a shared band-pass filtering circuit;
repeated Erk pulses transcribe IEGs more efficiently
than sustained Erk inputs. However, despite highly
similar transcriptional responses, each IEG exhibits
dramatically different protein-level accumulation,
demonstrating a high degree of post-transcriptional
regulation by combinations of multiple pathways.
Our results demonstrate that the Ras/Erk pathway
is decoded by both dynamic filters and logic gates
to shape target gene responses in a context-specific
manner.

INTRODUCTION

Cells respond to extracellular stimuli in diverse ways. They may

move, grow, or adopt specific cell fates. Such responses are

typically controlled at two distinct levels. Initially, signaling path-

ways transmit information from membrane-localized receptors

to intracellular compartments within seconds to minutes. On

the order of minutes to hours, intracellular pathways modulate

the expression of networks of target genes to induce prolonged

changes in cell state. Although both signaling pathways and their

downstream target gene networks have been the subject of

intensive study, major questions remain about how they are in-

terconnected. Which signaling pathways are sufficient to induce
Molec
the expression of particular sets of target genes? How do spe-

cific signaling states, defined by the combination of active path-

ways and their temporal dynamics, determine which target

genes are induced?

Addressing these important questions has been extremely

challenging because of the complex interconnections between

upstream signaling and downstream target genes. Receptor-

level stimulation can activate many parallel pathways with com-

plex dynamics, making it difficult to causally relate a single

pathway to a particular target gene’s response. The expression

of a single target gene product may also be regulated at multiple

steps, from the initiation of transcription to the stabilization of

protein products. Thus, an ideal approach for disentangling

this complexity would have three properties. It would (1) isolate

a single pathway at a time to avoid regulation by uncontrolled

signaling pathway combinations, (2) exert precise control over

stimulus dynamics so as to causally relate input stimuli to down-

stream responses, and (3) enable the experimentalist to monitor

multiple nodes during the process of target gene induction to

dissect regulation at each step of the central dogma.

Here, we develop an approach with exactly these properties,

by coupling optogenetic stimulation with live-cell reporters of

pathway activity, target gene transcription, and target protein

accumulation. Optogenetic control enables the selective activa-

tion of a single pathway, greatly reducing the combinatorial

complexity of the signals that are turned on by extracellular stim-

uli (Toettcher et al., 2013). Light can also be quickly toggled on

and off, enabling the delivery of precisely defined input dynamics

(Hannanta-Anan and Chow, 2016). On the reporter side, the

advent of CRISPR-based genome modification has made it

possible to directly tag endogenous genes with fluorescent re-

porters for visualizing transcription (Darzacq et al., 2009) and

protein accumulation (Stewart-Ornstein and Lahav, 2016).

High-resolution live-cell biosensors are also available for a

growing number of intracellular signaling pathways (Regot

et al., 2014). We show that these diverse technologies can be

combined in a single cell to provide a full input-output view of

signaling pathway transmission through the central dogma

(Figure 1A).

We apply our approach to study a canonical signaling/gene

expression interface: the regulation of immediate early genes
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Figure 1. A Global Map of Ras-Induced Transcriptional Dynamics

(A) Schematic of an idealized system for connecting signaling dynamics to gene expression, implementing both controlled inputs and live-cell reporters at

multiple nodes.

(B) To determine PDGF- and Ras-specific transcriptomes, NIH 3T3 OptoSOS cells were stimulated with PDGF or activating light and subjected to RNA-seq

analysis.

(C andD) Comparison of transcript abundance between unstimulated cells and 30min of light-activatedRas (C) or between 30min of PDGF and 30min of light (D).

Genes that were upregulated at any time point are colored red.

(E) Transcript abundance for all upregulated genes, normalized to each gene’s maximal expression condition. Genes were hierarchically clustered using Ward’s

method.

See also Figure S1.
(IEGs) by the mammalian Ras/Erk pathway. IEGs are among the

best-characterized targets of Ras/Erk signaling and play crucial

roles in learning and memory (Guzowski et al., 1999), cell prolif-

eration, and cancer (Miller et al., 1984). They are characterized

by their rapidity of response, with transcript levels peaking

1–2 hr after the addition of growth factor, and by the observation

that IEG transcription does not require new protein synthesis,

such that even quiescent cells are primed to induce IEGs. The

expression of IEGs and other Ras-dependent genes is also

thought to be subject to complex, multilayered regulation.

Different growth factors can induce distinct dynamics of Erk ac-

tivity, gene expression, and cell-fate outcomes (Bishop et al.,

1994; Marshall, 1995), leading to the proposal that certain IEGs

selectively respond to sustained, but not transient, Erk stimuli.

A putative mechanism for dynamic discrimination has even

been established: Erk modulates both transcription and protein

stabilization for the canonical IEG Fos (Murphy et al., 2002),

forming a coherent feed-forward loop that would be predicted

to selectively respond to sustained inputs (Mangan and

Alon, 2003).
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Recent studies using live-cell pathway reporters have uncov-

ered far more ornate Erk dynamics than the canonical transient

and sustained responses. Stochastic Erk pulses, traveling

waves, and long-term oscillation have been observed both

in vitro and in vivo (Albeck et al., 2013; Aoki et al., 2013; Hiratsuka

et al., 2015). Cellular responses that were previously thought to

require sustained Erk stimulation may also be activated by spe-

cific pulse sequences, suggesting that these natural dynamics

could play an important physiological role (Zwang et al., 2011).

Moreover, the contribution of different pathway combinations

induced by growth factors remains poorly understood (Kling-

hoffer et al., 2002). Together, these observations highlight the

importance of revisiting questions about how time-varying Erk

activity is interpreted by downstream genes with quantitative,

single-cell resolution.

To address these questions, we combine precise control of

Ras signaling with quantitative analysis of the dynamics of Erk

localization, IEG transcription, and IEG protein accumulation in

single live cells. We find that optogenetic Ras stimulation in-

duces a highly stereotyped, transient pulse of IEG transcription,



after which IEGs remain insensitive to Ras stimulation for hours.

Through a combination of mathematical modeling and experi-

ments, we demonstrate that transcriptional adaptation imple-

ments a tunable band-pass filter on Ras/Erk dynamics. Recur-

rent Erk pulses can efficiently activate target genes, whereas

sustained activation or infrequent Erk pulses each lead to

reduced transcription. Despite sharing a stereotyped global

transcriptional response, we report that IEG induction at the pro-

tein level is subject to additional, gene-specific control. Thus,

different combinations of extracellular stimuli activate distinct

subsets of IEGs in a manner that cannot be predicted from their

transcriptional responses. Our work thus reveals that dynamic

and combinatorial regulation each play crucial roles in Erk-

dependent IEG induction but that these two regulatory modes

act at distinct levels of the central dogma.

RESULTS

OptoSOS Stimulation Activates the Dynamic Ras
Transcriptome
In prior work, we developed an optogenetic system for delivering

highly precise, time-varying inputs to Ras, termed OptoSOS

(Toettcher et al., 2013). This system relies on a membrane-tar-

geted photoswitchable protein (Phy-CAAX) and a cytoplasmic

Ras activator (PIF-SOScat) whose localization to the membrane

can be triggered on and off by exposure to 650 and 750 nm light.

We found that this system is selective for Ras/Erk and does not

activate parallel growth factor signaling branches such as phos-

phatidylinositol 3-kinase (PI3K)/Akt, Src, or Jnk (Toettcher et al.,

2013). It can also be used to deliver highly precise levels and dy-

namics of Ras/Erk signaling both in vitro and in vivo (Johnson

et al., 2017). As a major goal of the present study is to extend

the reach of our OptoSOS system to probe target gene induc-

tion, we first set out to globally assess the transcriptional

response to light-activated Ras and compare it to that induced

by growth factor stimulation.

We stimulated NIH 3T3 OptoSOS cells with either constant

activating red light or platelet-derived growth factor (PDGF)

and measured transcriptional responses by RNA sequencing

(RNA-seq) (GEO: GSE100816). Total mRNA was collected after

0, 30, 60, and 120 min and used to track the dynamics of tran-

script abundance in both conditions (Figure 1B). Genes were

defined as upregulated if they were induced at least 3-fold

over unstimulated cells for at least two consecutive time points

(Figures 1C and 1D, red points; Figure S1A). By these criteria,

we detected 118 genes that were upregulated within 2 hr by

either PDGF or light stimulation, a number of Ras-responsive

genes comparable to that found in previous studies (Tullai

et al., 2007).

We found that both PDGF and light induced nearly identical

profiles of gene expression, with 100/118 genes induced by

PDGF and 110/118 induced by light. At each time point, we

found excellent agreement between the levels of gene induction

in response to both stimuli (Figure 1D and S1B). This agreement

also extended to response dynamics (Figure 1E), where hierar-

chical clustering revealed three classes of dynamic responses:

an early response peaking within 30 min, an intermediate

response peaking at �1 hr, and a late response where gene
expression gradually increased over the full 2-hr time course.

In all three classes, we found that light and PDGF led to highly

similar expression changes over time. We thus concluded that

sole stimulation of the Ras/Erk pathway by light was sufficient

to recapitulate at least the first 2 hr of the PDGF-induced tran-

scriptional response.

Developing an Engineered Cell Line for Single-Cell
Profiling of Ras-Dependent IEG Induction
Although RNA-seq provides a global snapshot of target gene

induction, its insights are limited in some important respects.

RNA-seq only reports on transcript levels, whereas signaling

pathways such as Ras/Erk can influence multiple steps along

the central dogma by regulating mRNA stability (Amit et al.,

2007), target protein levels (Murphy et al., 2002), and even pro-

tein subcellular localization (Grimm et al., 2012). Such multi-level

regulationmay be important for implementing the regulatory net-

works that shape target gene responses (Mangan and Alon,

2003). In addition, RNA-seq relies on population-averaged mea-

surements at a small number of time points, whereas Erk activity

can vary rapidly and asynchronously across a population of cells

(Albeck et al., 2013). Population-averaged measurements thus

cannot be used to accurately relate signaling dynamics to target

gene induction. To surmount these issues, we sought to couple

our OptoSOS system to live-cell reporters of signaling pathway

output (e.g., Erk activity), target gene transcription, and target

protein accumulation (Figure 2A).

To do so, we took advantage of live-cell reporters that were

recently developed at all three of these individual nodes. At the

signaling level, we previously demonstrated that the nuclear

translocation of a fluorescent Erk fusion protein faithfully tracks

light stimuli delivered to the OptoSOS system (Toettcher et al.,

2013). At the transcript level, the MS2/MCP system can be

used to quantitatively visualize transcription from endogenous

genomic loci (Garcia et al., 2013; Larson et al., 2011). In this sys-

tem, multiple repeats of an RNA stem-loop (MS2 loops) are intro-

duced into a target gene. During transcription, nascent MS2

loops are bound by a fluorescent viral coat protein (MCP-

mCherry), resulting in the appearance of a bright, fluorescent

spot at the site of transcription. At the protein level, we adopted

the strategy of introducing a fluorescent protein fusion into the

endogenous gene locus (Stewart-Ornstein and Lahav, 2016).

We chose a superfolder YFP variant (msfYFP) for its fast matu-

ration time (<10 min), enabling accurate measurement of fast

changes in protein levels (Pédelacq et al., 2006). Finally, we

incorporated a fluorescent histone 2B (H2B-dirFP) to label nuclei

for cell segmentation (Regot et al., 2014).

We pursued a two-step approach to integrate all of these com-

ponents in a single cell line. First, we generated a clonal NIH 3T3

‘‘chassis’’ cell line that expresses all system components that

are independent of a specific target gene (the OptoSOS system,

BFP-Erk, MCP-mCherry, and H2B-dirFP) (Figure S2A). Light

stimulation of the chassis cell line reversibly translocated SOS-

cat on and off of themembrane and induced Erk phosphorylation

to levels comparable with PDGF induction (Figures S2B–S2E).

Second, we modified our chassis cell line to tag specific Ras-

responsive target genes. We designed an msfYFP-24xMS2 re-

porter tag that can be integrated at the C terminus of any target
Molecular Cell 67, 757–769, September 7, 2017 759
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Figure 2. A System for Profiling Ras/Erk Control of IEGs in Single Live Cells

(A) Schematic overview of all-optical input-output system. Dynamic Ras stimuli can be delivered by illuminating OptoSOS cells with red/infrared light. Ras

pathway activity, target gene transcription, and target protein accumulation are inferred from BFP-Erk localization, MCP-mCherry nuclear foci, and msfYFP

expression, respectively.

(B) Co-transfection of Cas9 with an appropriate gRNA (guide RNA) and the msfYFP-MS2(24X) flanked by homology to the genomic cut site induces stable

integration of the msfYFP-MS2 tag at an endogenous genomic locus.

(C) Fold change of expression profiles for each IEG tagged using the approach in (B).

(D) Images of msfYFP expression for each genomically tagged IEG used in this study. Red box indicates tags that are mislocalized or exhibit fluorescent protein

cleavage.

See also Figure S2.
gene of interest using CRISPR-Cas9 (Figure 2B; STARMethods).

Our cassette is designed to be inserted in-frame at the C termi-

nus of the target gene, enabling us to visualize both protein accu-

mulation (from msfYFP fluorescence) and target mRNA produc-

tion (from MCP-mCherry nuclear foci).

We used our approach to construct cell lines for five canonical

IEGs: fos, rhob, btg2, klf2, and dusp4. These genes were chosen

because they exhibited a wide range of dynamic responses by

RNA-seq (Figure 2C) and are involved in diverse biological pro-

cesses. After sorting for msfYFP expression, we confirmed

proper integration of all five tags by genomic PCR and

sequencing. Henceforth, we refer to the five resulting cell lines

according to which target gene is tagged in each case (e.g.,

OptoSOS-Fos and OptoSOS-RhoB).

All five IEG reporter cell lines were subjected to extensive

testing and validation. First, we checked whether the MS2/
760 Molecular Cell 67, 757–769, September 7, 2017
MCP system was able to detect stimulus-dependent transcrip-

tion. Transcription could be induced by light or PDGF and was

blocked by the transcription inhibitor actinomycin D or the

MEK inhibitor U0126 (Figures S2F–S2I). Second, we probed

lysates collected from each cell line with an anti-GFP antibody

to validate that IEG-msfYFP fusion proteins were expressed at

the correct molecular weight (Figure S2J). Four of five genes

passed this test, but it was revealed that the msfYFP tag was

cleaved from the Klf2-msfYFP fusion protein. Our Klf2.YFP cell

line could thus be used to report on the rates of mRNA produc-

tion and translation (by quantifying MCP-mCherry foci and YFP

induction, respectively), but not total Klf2 protein levels or

localization.

Third, we validated proper protein localization of each fusion

protein by live-cell microscopy. This test revealed a defect in

RhoB-YFP localization, which can be explained by the loss of



a functional CAAX sequence as a result of theC-terminal msfYFP

fusion. We found that adding the RhoB-CAAX sequence back to

the C terminus of YFP rescued RhoB’s membrane localization,

and comparing the levels of nuclear RhoB-YFP and mem-

brane-localized RhoB-YFP-CAAX in individual cells demon-

strated that both exhibited similar dynamics after light stimula-

tion (Figures S2K–S2M).

Finally, to test that our tagging system did not dramatically

alter mRNA or protein half-life, we measured Fos-msfYFP decay

after a pulse of light-stimulated Erk (Figure S2N). Fos-msfYFP

exhibited a half-life of�40min, consistent with published reports

for the untagged Fos protein in 3T3 cells after pulsatile Erk acti-

vation (Murphy et al., 2002). Taken together, our results demon-

strate the flexibility of the chassis line/CRISPR-tagging approach

as a general method to track mRNA production and protein

accumulation of genes of interest in single live cells.

Similar IEG Transcription Dynamics Suggest a Common
Ras-Responsive Module
Our OptoSOS-IEG cell lines can be used to control Ras activity

while simultaneously tracking responses at three output nodes:

mitogen-activated protein kinase (MAPK) signaling output,

target gene transcription, and target protein accumulation.

We found that sequences of red/infrared light could be used

to reversibly stimulate OptoSOS activity and gene expression,

even while performing four-color fluorescent imaging at multi-

ple z-positions to ensure that all nuclear MCP foci were

captured (STAR Methods). Focusing first on the OptoSOS-

RhoB and OptoSOS-Fos cell lines, we observed that pulses

of activating red light drove corresponding pulses of nuclear

Erk and target gene transcription, as well as the gradual accu-

mulation of RhoB-YFP or Fos-YFP protein (Figures 3A and

3B; Movie S1).

How might information from dynamic Ras/Erk signaling be

decoded into IEG accumulation? To answer this question, we

imaged Erk localization, transcript production, and protein

accumulation of all five IEGs (Figure 3C; Movie S2). Continuous

red light stimulation led to immediate and sustained Erk accu-

mulation in the nucleus, as expected from prior work (Toettcher

et al., 2013). Light induced transcription of all five target genes

with strikingly similar dynamics, reaching a transient peak of

activation and then adapting back to baseline over the next

hour. In contrast, we observed highly divergent responses at

the level of target protein accumulation. Some gene products

were strongly induced by light (RhoB and Fos), whereas for

others, OptoSOS stimulation induced little to no change in

msfYFP accumulation (Btg2 and Klf2). We also observed one

case where nuclear-cytoplasmic shuttling, but not overall pro-

tein accumulation, responded to light-activated Ras (Dusp4).

In sum, all IEGs exhibited highly similar dynamics at the tran-

scriptional level but led to a wide variety of protein-level

outcomes.

Just as in our prior transcriptomic analysis, optogenetic Ras

stimulation and PDGF treatment broadly induced qualitatively

similar transcript- and protein-level responses (Figure S3A).

Both stimuli elicited a transient pulse of IEG transcription, as

well as accumulation of the same IEG protein products. How-

ever, some differences were also apparent: PDGF treatment
induced a pulse of nuclear Erk that decreased to an intermediate

level over�30 min, possibly due to receptor-level negative feed-

back (Mori et al., 1992). Consistent with the lower sustained

amplitude of Erk signaling, PDGF also induced noisier transcrip-

tional responses and reduced nuclear-cytoplasmic shuttling

of Dusp4.

The light-induced transcriptional dynamics we observed were

surprising for two reasons: (1) they lacked the characteristic

‘‘bursting’’ dynamics reported by prior studies using the

MS2/MCP system (Senecal et al., 2014) and (2) they were limited

in duration to the first hour of stimulation, despite continuous

light stimulation and nuclear Erk accumulation. Bursts of tran-

scription are typically explained by the probabilistic switching

of a DNA locus between an ‘‘ON’’ state that produces mRNA

and an ‘‘OFF’’ state with a low rate of transcription. In contrast,

IEG transcription was largely deterministic; for all genes,

we observed highly synchronous, sustained transcription that

began 10–20 min after light stimulation and then returned to

baseline over the subsequent �1 hr (Figure 3D; Movie S2). The

similarity across all five genomic loci raised the possibility that

all IEGs share a single transcriptional regulatory module that

initially induces a constant, high level of transcript production

and then adapts over time.

We reasoned that if IEGs are regulated by a single transcrip-

tional input module, then each gene might also exhibit a similar

amplitude of transcription. Amplitude can be determined from

the brightness of nuclearMCP foci, which should be proportional

to the number of nascent transcripts whose MS2 stem-loops

have already been transcribed and loaded with MCP protein.

For two genes with equal rates of transcription, the brightness

of foci should be proportional to the length of the 30 UTR

following transcription of the MS2 loops. Strikingly, we found

that this naive model was sufficient to explain the intensity of

transcriptional foci for all five IEGs (Figure 3E); burst intensity

was linearly proportional to 30 UTR length across all five IEGs

tested, as would be predicted if each was transcribed with

similar rates of polymerase loading, elongation, and termination.

Taken together, our results suggest that IEGs share highly similar

transcriptional responses, with a similar amplitude and duration

of transcript production in response to a constant mitogenic

stimulus.

IEG Protein Accumulation Is Regulated by
Combinatorial Signaling Control
Our initial experiments revealed that IEGs exhibit strong similar-

ities in transcriptional dynamics but divergent patterns of protein

accumulation. Where might these differences arise? To address

this question, we focused on Btg2, an IEG with no detectable

protein accumulation in response to light. Moreover, none of

the dynamic light inputs applied in this study induced Btg2-

YFP accumulation, strongly suggesting that Ras temporal dy-

namics alone are insufficient to regulate Btg2. We thus sought

to test whether different combinations of pathways might

instead elicit a Btg2 response.

Btg2 is also known to be activated in contexts other than

growth factor signaling; notably, its transcription is induced after

DNA damage in a p53-dependent manner (Porter et al., 2016).

To test whether DNA damage elicits fundamentally different
Molecular Cell 67, 757–769, September 7, 2017 761
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Figure 3. Visualizing Signal Transmission through the Central Dogma

(A) Nuclear BFP-Erk (left), MCP-mCherry transcriptional foci (middle), and RhoB-msfYFP protein accumulation (right) in response to a sequence of red and

infrared light inputs applied to OptoSOS-RhoB cells.

(B) Representative images before and after light stimulation for the cell quantified in (A). Note the appearance of two foci (red arrows) corresponding to the rhob

expression from both genomic loci.

(C) Sustained light stimulation of all five OptoSOS-IEG cell lines. Curves indicate mean ± SEM of nuclear BFP Erk translocation (left), MCP-mCherry nuclear focus

intensity (middle), and msfYFP-IEG protein accumulation (right) from at least 20 cells per panel.

(D) Delay times (mean ± SEM) between maximum instantaneous nuclear BFP-Erk accumulation and peak target gene activation.

(E) The amplitude of transcriptional foci (mean ± SEM) after light stimulation plotted against the 30 UTR length for each IEG. Dotted line indicates linear fit.

(F) Quantification of cytoplasmic Btg2-YFP in cells treated with Dox or PDGF. Mean ± SEM are shown.

See also Figure S3.
transcript- and protein-level dynamics, we treated OptoSOS-

Btg2 cells with the DNA damaging agent doxorubicin (Dox) or

PDGF. Both Dox and PDGF induced similar MCP foci, indicating

btg2 transcription, but only Dox led to the induction of Btg2-YFP

at the protein level (Figure 3F). In Dox-treated cells, the levels of

Btg2-YFP continued to accumulate over at least 6 hr. As Btg2 is

known to be highly unstable in resting cells, with a protein half-

life of less than 15 min (Mauxion et al., 2008), it is possible that

DNA damage signaling acts to both activate btg2 transcription

and stabilize Btg2 protein.

The post-transcriptional regulation we observed for Btg2 led

us to hypothesize that distinct cellular inputs such as growth
762 Molecular Cell 67, 757–769, September 7, 2017
factor stimulation and DNA damage might be differentially de-

coded by other IEGs as well. To further elucidate the range of

computations made by IEGs, we set out to systematically

compare Btg2 to the two genes that showed strong protein-level

responses to PDGF: Fos and RhoB. We treated OptoSOS-Btg2,

Fos, and RhoB cells with Dox, PDGF, or a cocktail of both stimuli

and quantified transcription and protein accumulation. Each

target gene exhibited distinct logical responses to Dox, PDGF,

or their combination (Figures S3B–S3D; Movie S3). These exper-

iments revealed cases where the mRNA- and protein-level re-

sponses were dramatically different for a single gene. For

instance, we observed transcription without detectable protein



accumulation for Btg2, Dusp4, and Klf2 after light and PDGF

stimulation (Figures 3C and S3C). Moreover, although PDGF

and PDGF + Dox treatment led to rhob transcription, only

PDGF induced RhoB protein accumulation (Figures S3E–S3G).

Thus, despite a common transcriptional response, individual

IEGs are subject to diverse post-transcriptional regulation that

ensures protein-level responses are limited to specific combina-

tions of stimuli.

Dephosphorylation of Nuclear Erk Drives
Transcriptional Adaptation
We have shown that continuous Ras stimulation drives persistent

Erk phosphorylation and nuclear localization but only elicits tran-

sient IEG transcription. Conversion of a persistent input to

a transient response is a hallmark of adaptation, a process that

isprevalent in awide rangeof sensorysystems (e.g., animal vision,

cellular stress responses). Adaptation is thought to allow pathway

responses to a wide range of input stimulus strengths (Hoeller

et al., 2014). It can be achieved by a variety of detailed mecha-

nisms but typically involves the delayed induction of a negative

regulator, either inproportion to the input (thereby formingan inco-

herent feed-forward loop) or to the output (a negative feedback

loop) (Ma et al., 2009). Many potential feedback loops have been

identified that could potentially regulate Ras/Erk signaling and

downstream gene expression (Amit et al., 2007), and we sought

to identify whether any of these network motifs play an indispens-

able role in IEG transcriptional adaptation.

Based on the �1 hr timescale of adaptation in our system, we

reasoned that the negative regulator may also be an Erk target

gene. We tested whether treatment with the translation inhibitor

cycloheximide (CHX) could block transcriptional adaptation,

focusing primarily on OptoSOS-RhoB cells. Indeed, CHX treat-

ment completely abrogated adaptation of rhob transcription,

leading to sustained, high-amplitude transcription over time (Fig-

ure 4A; Movie S4). Similar results were obtained from the other

four target genes and also extended to dynamic stimuli. In the

presence of CHX, transcriptional dynamics precisely tracked

time-varying light inputs for at least 5 hr (Figures S4A and

S4B). Newly synthesized negative regulators are thus sufficient

to explain all of the transcriptional adaptation we observed,

ruling out contributions from known post-translational feedback

loops (e.g., Raf phosphorylation by Erk) or additional Ras-to-Erk

feed-forward signaling.

We also tested whether the adaptation uncovered by optoge-

netic Ras stimulation was relevant to the physiological inputs

that normally activate the Ras/Erk pathway in fibroblasts. Again

focusing on the RhoB-YFP cell line, we first tested whether

PDGF pretreatment could induce an adapted state that would

interfere with subsequent light-induced transcription (Figure 4B).

We found that PDGF induced a pulse of rhob transcription that,

after adaptation, prevented further light-induced transcription.

Conversely, pretreatment with a 90-min light pulse also pre-

vented PDGF-induced transcription (Figure 4C). Similar results

were also obtained for serum treatment, an alternative Erk-acti-

vating stimulus (Figure 4D). Our results thus demonstrate that

transcriptional adaptation is a general response to sustained

Ras/Erk stimuli and could serve as an integration point for

comparing recent Erk-activating inputs.
We next sought to identify the molecular process targeted by

this adaptation circuit. Erk-dependent negative feedback could

in principle operate upstream of Erk, targeting members of the

Ras/Erk cascade, or downstream, targeting Erk or the transcrip-

tional machinery directly. However, sustained light stimulation

continued to drive nuclear Erk localization even long after tran-

scription had fully adapted, consistent with upstream signaling

that does not adapt (Figure 3C). We therefore focused on down-

stream nodes, starting with nuclear Erk activity. Immunofluores-

cence imaging of doubly phosphorylated Erk (dpErk) after light

stimulation revealed that nuclear Erk phosphorylation also

adapted to pre-stimulus levels on the same timescale as IEG

transcription and that adaptation was blocked by CHX pretreat-

ment (Figures 4E and 4F). In contrast, cytoplasmic dpErk levels

remained high as long as light was present and were unaffected

by CHX. Similar effects on nuclear dpErk levels were also ob-

tained when transcription was blocked by actinomycin D treat-

ment (Figures S4C and S4D), confirming that negative feedback

acts via new transcript/protein synthesis.

Our data are thus consistent with amodel of organelle-specific

negative feedback. A sustained input to Ras induces continuous

MEK activity and phosphorylation of cytoplasmic Erk, leading to

Erk nuclear translocation. Negative feedback in the nucleus (but

not the cytoplasm) leads to dephosphorylation of nuclear Erk

without affecting cytoplasmic MEK activity, resulting in a state

with high nuclear Erk levels but low kinase activity and suppres-

sion of Erk-dependent transcription.

We hypothesized that negative feedback on nuclear Erk

might depend on a well-described class of negative regulators,

the dual specificity phosphatases (DUSPs). Multiple members

of the DUSP family are known to dephosphorylate Erk and

are also restricted to the nucleus (Caunt et al., 2008). Our

RNA-seq data confirm that dusp genes are induced in response

to Ras activation (Figures S4E and S4F), thereby forming a

putative negative feedback loop. To further test this model, we

used a mutant allele of Erk (ErkD319N) known to confer insensi-

tivity to DUSPs (Brunner et al., 1994; Caunt et al., 2008). We

transduced OptoSOS-RhoB cells with similar expression levels

of BFP-Erk or BFP-ErkD319N (Figure S4G) and monitored

light-induced rhob transcription and RhoB-YFP protein levels.

When compared to unmutated Erk, light-stimulated ErkD319N

cells showed a higher overall amplitude of rhob transcription

and did not completely adapt, leading to persistent puncta of

nuclear MCP (Figure 4G; Movie S5). We also observed higher

levels of RhoB-YFP accumulation in ErkD319N-expressing cells

(Figure S4H).

Despite their persistent transcriptional response, some adap-

tation was still present in D319N cells. This residual adaptation

could be explained in three ways: (1) our cells express ErkD319N

on top of endogenous Erk1 and Erk2, which could still be tar-

geted by DUSPs, (2) the D319N mutation may only partly block

DUSP binding, and (3) additional negative regulators of nuclear

Erk may also contribute to adaptation. Nevertheless, our results

demonstrate that Erk-dependent DUSP phosphatase activity

plays at least a partial role in limiting the duration of IEG tran-

scription, providing one mechanism for ensuring transient

IEG transcription despite sustained MAPK pathway activation

(Figure 4H).
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Figure 4. Organelle-Specific Dephosphorylation of Nuclear Erk Drive Transcriptional Adaptation

(A–D) Quantification of MCP-mCherry nuclear foci (mean ± SEM) over time in OptoSOS-RhoB cells after light stimulation. Cells were stimulated with cyclo-

heximide (CHX) or vehicle control (A), light with or without pre-treatment with PDGF (B), PDGF with or without pretreatment with light (C), and sequential

stimulation with light and 10% fetal bovine serum (D).

(E) Images of dpErk localization in the OptoSOS chassis cell line after light stimulation and in the presence or absence of CHX. Images show fluorescent histone

H2B-diRFP (left), antibody staining for dpErk (middle), and BFP-Erk2 localization (right).

(F) Nuclear and cytoplasmic dpErk quantified over time after light stimulation (mean ± SEM), with or without CHX.

(G) MCP-mCherry nuclear focus intensity (mean ± SEM) in cells transduced with BFP-Erk2 D319N (blue) or BFP-Erk2 (red).

(H) Negative feedback on nuclear Erk can be blocked by translation inhibition and reduced by expression of Erk D319N.

See also Figure S4.
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Adaptation of IEG Transcription Implements Bandpass
Filtering of Erk Dynamics
Our studies have so far implicated negative feedback in limiting

IEG output in response to constant, sustained Erk inputs. How-

ever, more complex Erk dynamics have been observed in exper-

imental systems ranging from cultured epithelial cells (Albeck

et al., 2013) to primary cells in live mice (Hiratsuka et al., 2015).

Some evidence suggests that Erk target genes may be selec-

tively transcribed in response to certain dynamic stimuli,

although the mechanisms underlying dynamic filtering are still

unknown (Aoki et al., 2013). How might transcriptional adapta-

tion affect responses to the Erk dynamics observed in diverse

natural contexts?

To address this question, we first built a mathematical model

focused on three central processes: activation of Erk by up-

stream inputs, feedback inhibition on nuclear Erk, and Erk-

induced transcription of target genes. Our model consists of

four equations representing Erk, dusp transcripts, DUSP protein

(which represent both DUSPs and any other putative Erk-depen-

dent negative regulators), and transcription of a representative

target IEG (Figure 5A; STAR Methods; Data S1). We set out to

use this model as a simple and concise framework for investi-

gating howMAPKpathway dynamicsmight affect themagnitude

of IEG responses.

We focused primarily on simulating inputs that are reminis-

cent of the experimentally observed endogenous Erk activity

pulses, which typically last for �20 min and occur with a time

between pulses that varies with cellular context, ranging from

�30 min to �4 hr (Albeck et al., 2013; Aoki et al., 2013). We

applied inputs with a constant 20-min tON but variable tOFF (Fig-

ures 5B and 5C). Continuous stimulation (tOFF = 0 min) drove

adaptation in target transcription due to induction of negative

feedback, similar to that observed experimentally (Figure 5B,

top). In contrast, recurrent input pulses (tOFF = 64 min) were

much more efficient, leading to repeated pulses of target tran-

scription without triggering adaptation (Figure 5B, bottom).

Our results were highly sensitive to tOFF; toomuch time between

pulses and transcription was inefficient, whereas too little and

adaptation led to a damping envelope that reduced the

response amplitude of later pulses (Figure 5C). Thus, the model

predicts that an intermediate stimulus frequency can drive

maximum IEG expression, the hallmark response of band-

pass filtering.

We next tested whether bandpass filtering might be altered by

parameters that could vary between target genes. We found that

the parameter Ki, which represents the level of Erk required to

induce half-maximal transcript production, is a critical determi-

nant of dynamic filtering (Figure 5D). For promoters with high

Erk sensitivity (low Ki), simulations revealed that even the low

Erk activity reached after adaptation could induce a transcrip-

tional response. High-sensitivity promoters would thus be ex-

pected to respond to constant stimuli and act as low-pass filters

of Erk dynamics (Figure 5D, light blue). In contrast, band-pass

filtering was predicted for promoters with low to intermediate

Erk sensitivity (i.e., intermediate-high values of Ki). In this regime,

the optimal stimulus frequency varied with a gene’s Erk sensi-

tivity (Figure 5D). Notably, a wide range of Ras/Erk dynamics

have been observed experimentally, with tOFF ranging from
15 minutes to multiple hours (Albeck et al., 2013; Shankaran

et al., 2009). As expected, we found that negative feedback

was necessary for adaptation and band-pass filtering. A second

parameter, mRNA stability, was predicted to have no effect on

dynamic filtering (Figures S5A and S5B). Our computational re-

sults thus demonstrate that a remarkably simple model, Erk

adaptation coupled to target promoters with varying Erk sensi-

tivity, could relay these different naturally occurring Erk dy-

namics to distinct sets of target genes.

We next set out to compare our model results to experimental

IEG induction profiles. We first tested whether recurrent input

pulses could indeed drive multiple rounds of transcription

without triggering adaptation. We stimulated OptoSOS-RhoB

cells with 20-min activating red light pulses separated by

20-min periods of deactivating infrared light and monitored

rhob transcription. We observed repeated pulses of rhob tran-

scription that tracked our light input for at least 5 hr, confirming

that Erk pulses can repeatedly activate IEG transcription

without triggering complete adaptation (Figure 5E; Movie S6).

We next tested if all 5 IEGs were band-pass filtered by

measuring their responses across a range of dynamic light stim-

uli. We delivered 20-min pulses of activating light separated by

periods of deactivating light (tOFF) ranging from 4 to 334min. We

found that 4 of 5 genes exhibited clear maximal responses at

intermediate input pulse frequencies, with klf2 exhibiting a

weaker frequency-selective response. Interestingly, the optimal

frequency of stimulation varied between IEGs (Figures 5F and

S5C), with dusp4 and btg2 sharing a peak output (tOFF =

128 min) and fos/rhob exhibiting different maximum responses

(tOFF = 32 min and 64 min, respectively). Bandpass filtering was

also evident at the protein level for Fos-YFP (Figures S5D and

S5E). We thus conclude that IEGs can act as tunable band-

pass filters of upstream stimulus dynamics. More broadly, our

results reveal that a rich set of signals can be transmitted

through the Ras/Erk pathway and processed to induce dy-

namics-sensitive gene expression.

DISCUSSION

The OptoSOS System: Tracing Signal Flow through the
Central Dogma in Live Cells
The development of live cell biosensors at multiple intracellular

nodes is revolutionizing our understanding of the fundamental

dynamics governing cell signaling (Purvis and Lahav, 2013), tran-

scription (Larson et al., 2011), and translation (Wu et al., 2016).

However, despite an increasingly detailed picture within each

level, we are only beginning to understand how information is

propagated between them. Here, we set out to implement an

end-to-end system for dissecting information flow through a

signaling pathway to the nucleus and then back out through

the central dogma for specific target genes.

Based on our data, we propose a two-tiered scheme by which

upstream signaling regulates IEG accumulation (Figure 6). At the

transcriptional level, we find that the production of IEG mRNA

is dynamically gated. Repeated pulses of Erk activity drive

multiple cycles of transcription, whereas sustained or infrequent

inputs induce lower levels of transcription. Modeling and exper-

imental data indicate that dynamic filtering can be regulated in a
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Figure 5. Adaptation of IEG Transcription Implements a Bandpass Filter of Dynamic Erk Activity

(A) Mathematical model of Erk-induced transcription. Schematic representation of interactions simulated using equations representing nuclear dpErk, dusp

mRNA, Dusp protein, and IEG transcripts with differing sensitivities to Erk.

(B) Simulations showing adaptation of transcription under continuous light (top) but repeated bouts of transcription in response to intermittent light pulses

(bottom).

(legend continued on next page)
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Figure 6. IEGs AreRegulated byDynamic andCombinatorial Control

Our study suggests a two-tiered scheme for IEG regulation. First, IEG tran-

scription is dynamically controlled by the Ras/Erk pathway. Long-term Erk

inputs lead to adaptation of IEG transcription, whereas periodic Erk stimuli

lead to repeated cycles of transcriptional induction. Second, IEG protein

production is combinatorially controlled. Two stimuli that both elicit tran-

scription can have differential protein-level outcomes, demonstrating that

different pathway inputs control both transcriptional and post-transcrip-

tional steps.
gene-specific manner, leading to different amounts of transcript

production even for a single dynamic input stimulus.

We also find evidence for a second level of regulation, acting

post-transcriptionally, that controls which IEGs are produced in

response to extracellular cues. Despite similar transcription

profiles, many IEGs do not accumulate at the protein level after

light-activated Ras or PDGF stimulation. Moreover, IEG protein

accumulation can be induced or suppressed by specific combi-

nation of signaling cues. For instance, although rhob is always

transcribed in response to growth factor treatment, RhoB pro-

tein induction appears to evaluate the logical expression

‘‘growth factor AND NOT DNA damage.’’ Our observations

thus suggest that even for a classic signaling-to-gene-expres-

sion system like the growth factor control of IEGs, rich layers

of regulation remain to be uncovered and mechanistically

understood.

The two-tiered regulatory scheme we propose might enable

cells to combine information encountered by the cell on very

different timescales (Gordley et al., 2016). On a slow timescale,

transcript accumulation could respond to multiple cycles of dy-

namic pathway activity, enabling cells to integrate information

about environmental conditions (e.g., whether the cell’s environ-

ment is permissive for growth) over periods of multiple hours. In

contrast, a fast layer of post-transcriptional combinatorial con-

trol could enable cells to rapidly transduce information from

additional input pathways (e.g., the acute presence of cellular

stress) into a protein-level response, taking advantage of tran-

scripts that have already integrated long-timescale information.
(C) Simulations showing decreased transcription if the frequency of light pulses

(D) Simulated total transcript production as a function of tOFF for target genes wit

(E) Images of transcriptional foci (top; white arrows) and quantified MCP-mChe

demonstrating repeated responses to optimally spaced input pulses.

(F) Quantification of MCP-mCherry nuclear focus intensity (mean ± SEM) during tim

separated by inactivating light pulses lasting from 4 to 384 min.

See also Figure S5.
A Pulse Generator Links Erk Dynamics to Target Gene
Transcription
The observation of band-pass filtering at the transcriptional

level could have far-reaching consequences for understanding

how information is transmitted from the Ras/Erk pathway to

target gene induction. Rather than focusing solely on model

cellular contexts where Erk activity is thought to be either

transient or sustained, our work points to the importance of

the pulsatile Erk dynamics that have now been observed across

a wide range of contexts both in vitro (Albeck et al., 2013; Aoki

et al., 2013; Shankaran et al., 2009) and in vivo (Hiratsuka et al.,

2015; Kumagai et al., 2015). Moreover, we found that the

enrichment of Erk in the nucleus does not necessarily imply a

high level of nuclear Erk activity. Such organelle-specific regu-

lation provides an elegant solution to the challenge of

decoupling the multiple roles of Erk within the cell, enabling

the dynamic regulation of target genes without affecting Erk

substrate phosphorylation in other cellular compartments. Our

results also highlight the importance of biosensors that report

directly on kinase activity, not just protein localization (Regot

et al., 2014).

Why might a pathway encode information in a temporal

sequence of pulses rather than in the amplitude or duration of

a constant stimulus? One possible reason may relate to the

role of Ras/Erk signaling in disease. Cancer and many develop-

mental disorders are thought to rely on enhanced signaling

through the Ras/Erk pathway to drive improper proliferation or

differentiation (Johnson et al., 2017). We would predict that

oncogenic Ras pathway mutations (e.g., at EGFR, Ras, or Raf)

would induce nuclear Erk activity that would still be subject to

DUSP-mediated adaptation and thus drive a brief transcriptional

pulse, providing a valuable brake on sustained growth-promot-

ing gene activation. This model would imply that nuclear-local-

ized, Erk-specific DUSPs play a crucial role in suppressing

Erk-dependent transcription in response to activating Ras

pathway mutations and function as important tumor suppres-

sors, as has recently been reported (Balko et al., 2013; Rush-

worth et al., 2014).

A second reason that temporal encoding may be advanta-

geous is that it could enable a single pathway to be repurposed

to differentially regulate target genes. Our model demonstrates

that a remarkably simple network—a single negative feedback

loop coupled to target gene promoters with different sensitiv-

ities to Erk—enables target genes to act as tunable band-

pass filters that respond to specific frequencies of Ras pulses.

The frequency of upstream stimuli may thus be decoded into

distinct cellular responses, consistent with recent studies

showing that pulsatile nerve growth factor (NGF) stimulation in-

duces more homogeneous differentiation in PC-12 cells than

does continuous stimulation (Ryu et al., 2016), as well as by
is too high (top) or low (bottom).

h different sensitivities to Erk (Ki). Each curve is normalized to its peak output.

rry nuclear focus intensity (bottom) of a representative OptoSOS-RhoB cell

e courses as in (E), where cells were subjected to 20min activating light pulses
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the finding that certain frequencies of osmolarity stress dramat-

ically reduce yeast cell growth (Mitchell et al., 2015). Future

studies combining precise optogenetic stimuli and reporters

of cell fate could shed new light on whether the dynamics of a

single pathway are sufficient to distinguish among cell fate

responses.
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METHOD DETAILS

Cell culture
NIH 3T3 mouse embryonic fibroblasts were grown in DMEM supplemented with 10% FBS. Cells were maintained on Thermo

Scientific Nunc Cell Culture Treated Flasks with Filter Caps and grown at 37�C with 5% CO2. The number of passages of any cell

line was limited to 10. For cell lines expressing puromycin and/or hygromycin resistance genes media was supplemented with

50 mg/ml hygromycin and/or 1 mg/ml puromycin.

RNA sequencing
NIH 3T3 OptoSOS cells were starved overnight and stimulated with PDGF or light for the appropriate time. Total RNA was collected

by TRIzol treatment followed by isopropanol precipitation. mRNA purification and cDNA library preparation were performed using the

TruSeq mRNA library preparation kit (Illumina), resulting in a single pooled cDNA library of barcoded samples from all stimulus

conditions. The quality of the cDNA library from each experimental condition was separately assessed by Agilent Bioanalyzer. After

pooling equal quantities of each barcoded sample, 50 bp reads were collected on 3 lanes of an Illumina HiSeq 2000.

Sequenced readswere trimmed for adaptor sequence andmasked for low-complexity or low-quality sequences. All reads from the

same index (e.g., the same experimental condition) were pooled from all 3 lanes, resulting in a total of 30-50 million reads per con-

dition. Any remaining ribosomal/tRNA reads were excluded by first using Bowtie to map to an rRNA/tRNA genome, and discarding

any successfully mapped reads. Non-ribosomal/tRNA reads were then mapped using Tophat using the mm9 genome and mouse

genome annotation file (GTF) from Illumina’s iGenomes page. Cufflinks/Cuffcompare was then used to generate a tracking file to

compare transcript abundance (FPKM values) across all samples.

Baseline transcript abundancewasmeasured in biological triplicate (0min controls) and each successive time point wasmeasured

in a single experiment. Genes were considered upregulated if they were induced at least 5-fold in at least two consecutive time points

relative to their baseline abundance.

Lentivirus production and transduction
Lentivirus was produced as per the protocol described in Toettcher et al. (2013). Briefly, Lenti-X 293T cells were plated in a 6-well

plate at 70% confluency and co-transfected with the appropriate pHR expression plasmid and lentiviral packaging plasmids

(pMD2.G and p8.91 – gifts from the Trono lab) using Fugene HD transfection reagent. Viral supernatants were collected 2 days after

transfection and passed through a 0.45 mm filter.

NIH 3T3 cells to be infected with lentivirus were plated in a 6 well dish at 20%–40% confluency. After adherence to the plate,

10-100 mL of filtered virus were added to the cells. 24 hr post-infection, viral media was replaced with normal growth media and cells

were imaged at least 48 hr after infection to allow time for integration and expression.
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Generation of clonal chassis cell line
First, wild-type NIH 3T3 cells were co-transfected with a plasmid bearing the Super PiggyBac transposase and a second plasmid,

pUC piggyBac, containing the optogenetic system components- phyB, bfp-erk, iRFP-PIF-SOScat – as well as a puromycin resis-

tance gene for selection and construct maintenance. Fragments encoding key domains were amplified from plasmids using PCR

and ligated into pHR lentiviral backbones, PiggyBAC transposase vectors, or CRISPR-compatible vectors using Gibson assembly

(New England Biolabs, Ipswitch MA).

After undergoing one week of selection in puromycin these cells were sorted once for high bfp-erk expression. Following the

transposed cell population was then infected with lentivirus bearing the mcp-mCherry and h2b-diRFP genes. This twice-modi-

fied population was then sorted for single-cell clones using fluorescence activated cell sorting (FACS) gating for single cells that

expressed both high levels of bfp expression as well as intermediate levels of mCherry expression- with each gated channel

representing one of the two separate genomic integration events. Clones were grown in cell culture treated 96 well plates in

a 1:1 ratio of DMEM + 10% FBS and NIH 3T3 conditioned media. After 2 weeks clones were evaluated for light-dependent

translocation of iRFP-PIF to the membrane as well as light-dependent nuclear translocation of BFP-Erk. Upon passing both

of these tests cells were expanded, aliquoted, and frozen down in liquid nitrogen for future experimentation and CRISPR tag

integration.

CRISPR integration and isolation of native loci tagged IEGs
For each IEG to be tagged a plasmid was constructed with 2 kb of upstream genomic homology and downstream genomic

homology, as predicted by the mm9 mouse genome assembly, flanking, in-frame, the codons for msfYFP followed by a

stop codon and 24x repeats of the MS2 RNA aptamer. DNA strands with genomic homology were isolated using PCR, using

PrimeSTAR GXL polymerase from Clonetech, with genomic DNA templates isolated by Epicenter QuickExtract DNA extraction

solution following the manufacturers’ guidelines. Plasmids were transformed into One Shot Stbl3 chemically competent E. coli

to avoid loss through recombination of the MS2 repeats. Genomic targeting was done using the pX330 plasmid expressing

Cas9 nuclease as well as a unique gRNA for each tagged IEG. gRNAs were inserted into this plasmid using BbsI digestion

as has been previously reported (Xue et al., 2014). Candidate gRNAs were first selected for proximity to the stop-codon of

the candidate IEG. Only gRNAs that would result in a double-stranded cut > 30 bp away from the stop codon were considered.

Next gRNAs were filtered for their off-target activity using the Zhang Lab’s gRNA design tool (http://crispr.mit.edu/). Finally

gRNAs were eliminated if, upon cutting and directing homologous recombination of the msfYFP-MS2 tag, the entire gRNA-

binding, genomic site remained intact. For gRNAs that did not already begin with a guanine nucleotide one was added. Sin-

gle-stranded gRNAs with 20 bp overhangs were synthesized by Integrated DNA Technologies, annealed, and inserted into

BbsI-digested pX330 plasmid using Gibson assembly. All plasmids were verified by restriction enzyme digest followed by

insert sequencing.

The chassis cell-line or other NIH 3T3 derived line was plated to a low to intermediate confluency (20%–40%) in six-well dishes and

2.5 mg of both purified plasmids, pX330 and homology bearing, were co-transfected using Lipofectamine LTX & Plus reagent by Life

Technologies using Opti-MEM as the vehicle according to the manufacturer’s guidelines. Media was replaced with fresh DMEM +

10% FBS after 24 hr. Cells were checked for msfYFP fluorescence by confocal fluorescence microscopy 3 days after transfection

and then bulk-sorted for msfYFP expression using FACs.

Cell preparation prior to imaging
For all imaging experiments cells were plated on 96-well, black-walled, 0.17 mm high performance glass bottom plates from

In Vitro Scientific that had been pretreated with 10 mg/ml fibronectin in phosphate buffer saline (PBS). Cells were allowed to

adhere overnight in DMEM + 10% FBS. To activate the Phy-PIF optogenetic system 10 mM phycocyanobillin in DMSO was

added to cultures for 1 hr. Cells were maintained under continuous 750 nm deactivating light supplied by custom designed

LED-bearing circuit boards. Four hours prior to the experiment DMEM + 10% FBS was exchanged by washing cells twice

in DMEM + 1 mg/ml Bovine Serum Albumin (BSA). Media exchanges were done in the dark using Energizer Vision HD head-

lamps modified with 750 nm LEDs. Just prior to imaging 50 mL of mineral oil was added to the top of each well to stop

evaporation.

Imaging
Cells were maintained at 37�C with 5% CO2 for the duration of an imaging experiment. Confocal microscopy was performed on a

Nikon Eclipse Ti microscope with a Prior linear motorized stage, a YokogawaCSU-X1 spinning disk, an Agilent laser linemodule con-

taining 405, 488, 561 and 650 nm lasers, and an iXon DU897 EMCCD camera.
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Optogenetic stimulation hardware
For microscopy experiments both 650 nm red and 750 nm infrared light was delivered using two X-Cite XLED1 light sources. XLED1s

were individually coupled to their own Polygon400 Mightex Systems digital micromirror device to control the temporal dynamics of

light inputs. For all other experiments light inputs were delivered through custom 36-LED printed circuit boards with all LEDs wired to

a single power source.

Quantification of transcriptional foci
Transcriptional bursts were quantified using a semi-automated procedure. First bursting cells were imaged by taking a

7-layered z stack spanning 4 mm (0.8 mm between z-slices), which was centered on the medial Z-plan of the nuclei of in-

terest. The maximum projection in the Z dimension was then computed to bring all imaged bursts into the same plane.

Positional information about the location of each burst over time was then annotated by hand using the ImageJ ‘measure’

tool. Hand tracking was necessary to exclude the quantification of burst-like debris floating in the imaging field that could be

confused as bursts. From there we developed a MATLAB script that (a) identifies a burst region in the maximum intensity

projected time series, (b) fits a 2-dimensional Gaussian to the identified region whose parameters were limited to exclude

relatively large underlying fluctuations in background intensity, and (c) calculates the integrated area under the fit Gaussian

as the burst intensity.

Drug treatment
All drug additions were done using 200 mL gel-loading tips. Drugs were pre-diluted to a 1:10 stock concentration in the current exper-

imental media and added directly to cells on themicroscope. Final drug concentrations were: Cycloheximide 100 mg/ml, Actinomycin

D 100 mg/ml, PDGF 10 ng/ml and Doxorubicin 1 mM.

Immunofluorescence staining
Cells were first fixed with Cytofix from BD Biosciences according to manufacturers instructions and then permeablized with

100% ice-cold methanol. Samples were re-suspended in immunofluorescence buffer (PBS, 10% FBS, 2 mM EDTA) and

blocked for 1 hr at room temperature. For staining phosphorylated Erk samples were incubated with anti-phospho-p44/42

MAPK (Erk1/2) (Thr202/Tyr204) rabbit mAb (Cell Signaling) #4370 was diluted 1:200 in immunofluorescence buffer at 4�C over-

night. Cells were then washed 5 times in immunofluorescence buffer + 0.3% (V/V) Triton 100-X (IF-Triton) and incubated with

anti-rabbit secondary for 1 hr at room temperature. Finally cells were washed 5 times with IF-Triton and imaged in the presence

of 1 mg/ml DAPI.

CELL LYSATE COLLECTION/WESTERN BLOTS

Media was aspirated from cells grown in 6-well (9 cm2) tissue culture treated dishes. Cells were immediately lysed in 120 mL ice-cold

RPPA lysis buffer (1% Triton X-100, 50mM HEPES, pH 7.4, 150mM NaCl, 1.5mM MgCl2, 1mM EGTA, 100mM NaF, 10mM Na

pyrophosphate, 1mM Na3VO4, 10% glycerol, freshly added protease and phosphatase inhibitors from Sigma-Aldrich Cat#

11836170001 and 04906837001, respectively). Cell lysates were collected in microfuge tubes and centrifuged at 13,000 rpm for

10 min at 4�C. Supernatants were collected and then mixed with 4x NuPAGE LDS sample buffer and heated at 95�C for 5 min. Sam-

ples were then loaded onto 4%–12% Bis-Tris gels, transferred to nitrocellulose, probed with primary and secondary antibodies and

imaged using a Li-Cor Odyssey CLx imaging system.

Mathematical model of Erk-to-transcription dynamic transmission
State variables

E: Erk protein

m: dusp mRNA

p: DUSP protein

mi: target mRNA

Inputs

uðtÞ: pathway input (OptoSOS induced Ras activity), which we choose to take the values {0, 10} depending on whether light is OFF or

ON, respectively.

It has been experimentally observed that ppErk pulses occur with a similar pulse width but variable time between pulses (Albeck

et al., 2013; Hiratsuka et al., 2015). Pulses in Erk activity can occur as frequently as once per 20 min (Shankaran et al., 2009) or as

rarely as one per 4 hr (Aoki et al., 2013). We thus simulated Erk pulses on this experimentally measured timescale (e.g., 20 min pulses

of input, repeating every 20 min to multiple hours).
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Model equations

Our model comprises 4 equations:

dE

dt
= uðtÞ � gE � dpE

dm

dt
=

En

Kn
1 +En � gm

dp

dt
=m� gp

dxi
dt

=
En

Kn
2i +En � gix

Parameters

There are four basic parameters in our model. Two parameters (K1 and d) characterize our negative feedback loop, one representing

the strength of Erk-induced DUSP transcription and the other representing the DUSP-induced dephosphorylation of Erk. One degra-

dation rate (g) characterizes the basic transition rates of Erk activation, mRNA production and protein accumulation. For simplicity

these three transitions through the central dogma are assumed to occur on a similar timescale. This assumption is accurate within an

order of magnitude, as we have measured the delays experimentally in (Toettcher et al., 2013) and Figures 3D–3E to be 10-30 min.

Finally, we assume some cooperativity in the ability of nuclear ppErk to induce gene expression, and between DUSP expression and

nuclear ppErk inhibition.

For all simulations in Figure 5, the parameter values were chosen are as follows:

K1 = 0:05
d= 50
g= 1
n= 2

There are also two parameters per target gene that represent their activation by nuclear ppErk, and their degradation rate:

Ki = variable
gi = variable

These do not affect Erk or DUSP dynamics (which are completely specified by inputs and the negative feedback loop above) but

rather reflect potential gene-to-gene variations Erk sensitivity (Ki) or rate of turnoff in the absence of input (gi).

Simulating the model

Model simulations were conducted in Python 3 using the Anaconda 4.3 distribution fromContinuumAnalytics. Numerical simulations

were conducted using the odeint function from the SciPy v0.18.1 scipy.integrate module, which is used as a wrapper for the

USCD1227 LSODA ordinary differential equation solver for stiff or non-stiff systems.

All computational experiments can be found in the Supplementary iPython notebook (Data S1). After defining the nonhomoge-

neous, pulse-delivering, input function uðtÞ we defined a function, nfDeg, capturing our description of the model. Initial conditions,

state0, were set to 0 and a typical pulse input sequence was simulated for 350min (modeled time) with 20min input pulses separated

by 60 min off periods. All state variables were then plotted using the matplotlib plotting library.

For band-pass input scan experiments the simulation time was increased to 10,000 min to avoid artifacts resulting from the aver-

aging system outputs with different period lengths. This substantially increased simulation time andmemory. The first 2 input periods

for each stimulation were omitted from calculations of the average output to avoid the ‘first burst effects’ and better represent the

model behavior as t/N. For these computations the parameter corresponding to promoter affinity, K2i, was varied over two orders

of magnitude, from 0.1 to 10.

For simulations where the negative feedback was removed the rate of creation of negative feedback protein Dusp was simply

multiplied by 0. Band-pass experiments for these systems were run the same as those with negative feedback.

For degradation rate scans the parameter gi was varied by five orders of magnitude, from 0.01 to 100.

QUANTIFICATION AND STATISTICAL ANALYSIS

All quantification was performed using ImageJ or MATLAB and statistical analysis was performed using MATLAB. Data are typically

presented as mean ± SEM as specified in the figure legends.

DATA AND SOFTWARE AVAILABILITY

The accession number for the raw and analyzed RNA-seq data reported in this paper is GEO: GSE100816.
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